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Abstract— In this paper, the existence of positive solutions of 

fourth-order differential equations with indeterminate weights 

is considered as follows  
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Where M is a constant, Ra )1,0(: , RRf : is 

continuous, 0)0( f , 0 is a parameter. Our approach is 

based on the Leray-Schauder fixed point theorem. 
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I. INTRODUCTION 

    As we all know, four-order differential equations are 

widely used in elastic mechanics and Engineering Physics. 

They are mainly used to describe the deformation of elastic 

beams. For example, under the Lidstone boundary condition 

)1()0()1()0( uuuu  , it can be used to simulate the 

deformation phenomenon of elastic beams at both ends 

simply supported. In recent years, the existence of positive 

solutions has attracted the attention of many scholars, and 

some results have been achieved.
]131[ 
. In particular, in 2015, 

R.Vrabel
]1[
 applied the upper and lower solutions to study 

the existence of  
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solutions when 021  kk . 

The main results are as follows: 

Theorem A Assume that  the problem )1.1(  has a lower 

solution  and an upper solution  , such that 

)()( xx   , ]1,0[x . If ]1,0[:f  

)](),([ xx  R  is continuous, and for 

)()( 21 xuux   , ]1,0[x  satisfies 

),(),( 21 uxfuxf   

then problem (1.1) has a solutions )(xy satisfies 

.10),()()(  xxxyx   

In 2018, Ma
]2[
etc. extends the main results of ]1[ . In 

this paper, the existence of problem )1.1( solutions when 
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121  xkk  is discussed by using the  
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upper and lower solutions. Where 
1x  is the first positive 

solution of the equation 

The main results are as follows: 

Theorem B Assume that  the problem )1.1(  has a lower 

solution  and an upper solution  , such that 

)()( xx   , ]1,0[x . Let 

)}()(,10:),{(: 2 xuxxRuxE   ,If 

REf :  is continuous, and for 

)()( 21 xuux   , ]1,0[x  satisfies 

),(),( 21 uxfuxf   

then problem (1.1) has a solutions )(xy satisfies 

.10),()()(  xxxyx   

It is worth noting that ]1[ consider the case of 021  kk , 

]2[ consider the case of
210 kk  , However, we will 

discuss the situation  021  kk . Motivated by the above 

works, we will apply the Leray-Schauder fixed point theorem 

to establish the existence of positive solutions to the following 

fourth-order periodic value problems 
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We make the following assumptions: 

)1(H RRf : is continuous, 0)0( f ; 

)2(H Ra ]1,0[: is continuous and not identically 

zero, there exists a number 1k such that 

1 1

0 0
( , ) ( ) ( , ) ( )k x y a y dy k k x y a y dy    

for every ]1,0[x ,where
a (resp.

a ) is the positive 

(resp.negative) part of a , ),( yxK is the Green’s function of  
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The main results of the present paper are as follows: 

Theorem 1.1. Let )1(H - )2(H hold. Then there exists a 
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positive number
* such that )2.1( has a positive solution 

for
*0   . 

Remark The requirement of f in document ]1[ is monotonous 

increasing. In this paper, f is continuous and weight function 

are allowed to change sign, so the condition of this paper is 

weaker than that of ]1[ .  

II. PRELIMINARIES 

Throughout the paper, we assume that )0()( fuf  for 

0u , ]1,0[C is a Banach space. The norm in ],0[ TC is 

defined as follows 

)(max
]1,0[

tuu
t

 . 

We first recall the following fixed point result of 

Leray-Schauder fixed point theorem in a space. 

Lemma2.1.
]15[
 Define 
4: { ([0,1]) : (0) (1) (0) (1) 0}W u C u u u u       , 

linear operator ])1,0([: CWLc  and MuuuLc  )4(
, 

Wu . then 

(i) ML is strongly inverse-positive in 0W  04  M ; 

(ii) 
40

4
 M

c
ML is strongly inverse-negative 

in 0W . 

Here 8843.9504 4

00  kc and 9266.30 k is the 

smallest positive solution of the equation kk tanhtan  . 

Proof. For part (i) see ]15[ , Chapter 2, Section 4.1.3. 

We shall prove that if 0km  then 0),( yxK for all 

).1,0(, yx From the fact that 20 k , we have that 

0)csc( m , so since the Green’s function ),( yxK  is 

symmetric and 0)sinh( m , we only must show that for all 

)1,0(, st .

0)sinh())1(sinh()sinh())1(sin()sin(  mxymmymmx

which making y1  is equivalent to  
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)sin()sin( 
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for all )1,0(, x . Clearly it suffices to consider the case 

0)sin( m and 0)sin( mt .Since )sinh()sin( xx for 

all 0x  it is enough to prove that 

)sinh(

)sin(

)sinh(

)sin(

m

m

mx

mx
 for all )1.2).(1,0(x  

But this inequality follows immediately from the derivative of 

)sinh(

)sin(

x

x
is strictly negative in ),0( 0k . Therefore since 

0kmmx   we have that (2.1) holds. 

Lemma2.2. Let 0 1.   Then there exists a positive 

number 0  such that, for 0    , the problem 

(4) ( ) ( ), (0,1)
(2.2)

(0) (1)= (0) (1) 0.
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has a positive solution u with  0~ u  as 0  , and 

),1,0(),()0(~
)(  xxpfu x  . 

where 

0

( , ) ( ) .

T

K x y a y dy

p( x) =  

Proof. For each ]1,0[Cu , let 

]1,0[,))(()(),()(
1

0
 

 xdyyufyayxKxAu   

Then ]1,0[]1,0[ CCA ： is completely continuous and 

fixed points of A are solutions of )2.2( . We shall apply the 

Leray-Schauder fixed point theorem to prove that A has a 

fixed point for   small. Let 0  be such that 

( ) (0)f x f for 0 s   . 

suppose that 
)(

~
2 




fp
 , where 

0
( ) max ( )

s t
f t f s

 
% . 

Then there exists (0, )A  such that 

f(A ) 1

2 pA



 


%
. 

Let [0,1]u C and (0,1)  be such that u Au . 

Then we have 

( ),u p f u %  

or 

( u ) 1f

u p


%
. 

which implies that u A . Note that 0A  as 0  . 

By the Leray-Schauder fixed point theorem , A has a fixed 

point u
%  with u A   % . Consequently, 

( ) (0) ( )u x f p x % ， x [0,1] , and the proof is 

complete. 

III. PROOF OF THE MAIN RESULT 

Proof of Theorem 1.1 Let 
1

0
( ) ( )q x a y dy  . By ( 2)H , 

there exist positive numbers (0,1)  ，  such that 

( ) ( ) ( ) (0)q x f s p x f ,                   (3.1)  

for s [0, ] . Fix ( ,1)  and let 
* 0  be such that 

(0)u f p   % ,                   (3.2)  

for 
*  . where u

% is given by Lemma 2.2,  and 

( ) ( ) (0)( )
2

f x f y f
 

  ,              (3.3)  

for , [ , ]x y    with 
* (0)x y f p   .  
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Let
*  . We look for a solution u of (1.3) of the form 

u v % .Thus v  solves 

(4) ( ) ( )( ( ) ( ))

( ) ( ), (0,1)

(0) (1) (0) (1) 0
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a x f u v x

v v v v
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For each [0,1]C , let v A be the solution of 
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Then : [0,1] [0,1]A C C is completely continuous. Let 

[0,1]v C and (0,1)  be such that v Av . Then we 

have 

(4) ( ) a ( )( ( ) ( ))

( ) ( ).

v x Mv x f u v f u

a x f u v
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We claim that (0)v f p , Suppose to the 

contrary that v = (0)f p . Then by (3.2) and (3.3) , 

we obtain 

u v u v     % % , 

and 

( ) ( ) (0) .
2

f u v f u f 

 
  % %  

which, together with (3.1) , implies that 

( ) (0) ( ) (0) ( )
2
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2

v x f p x f p x

f p x
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 
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


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 ，

(3.4)  

In particular 
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a contraction, and the claim is proved. By the Leray-Schauder 

fixed point theorem, A  has a fixed point v with 

(0)v f p  . Hence v satisfies (3.4)  and, using 

Lemma 2.1 , we obtain 

( ) ( )

(0) ( ) (0) ( )
2

(0) ( )
2

u x u v x

f p x f p x

f p x

  

 
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
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
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i.e., u is a positive solution of (1.2) . This completes the 

proof of Theorem 1.1.
 

IV. APPLICATION 

Example 4.1Consider the following nonlinear second-order 

periodic boundary value problems 

(4) ( ) 16 ( ) ( ) ( ), (0,1)
(4.1)

(0) (1) (0) (1) 0.

u x u x a x f u x

u u u u

   

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where  is a positive parameter, ( ) lna x x , 

2( ) 1f u u   , u>0  is continuous, 2m  satisfies the 

assumption ( 1)H . 

Since ( ) lna x x  is continuous on[0,1] , and there exists 

a number 1k  such that 

1 1

0 0
( , ) ( ) ( , ) ( )k x y a y dy k k x y a y dy    

for every x [0,1] , where
+a (resp. a

) is the positive (resp. 

negative ) part of a , K( x, y)  is the Green's function of 

(4) ( ) 16 ( ) 0, (0,1)

(0) (1) (0) (1) 0.

u x u x x

u u u u
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and 

[csc(2) sin(2 2 )sin(2 )

csch(2)sinh(2 2 )sinh(2 )] /16,

0 1,
( , )

[csc(2) sin(2 2 )sin(2 )

csch(2)sinh(2 2 )sinh(2 )] /16,

0 1.

x y

x y

y x
K x y

y x

y x

x y
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
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 
  

 

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whic

h satisfies the assumption ( 2)H .By Theorem 1.1 , if 

( 1) ( 2)H H  hold, then there exists a positive number
*  

such that (4.1)  has a positive solution for
*0    . 
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